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ABSTRACT 

The instantaneous thrust-direction for a rocket vehicle to per form a 

minimum-time injection into a circular orbit  of prescr ibed radius is determined 

as a function of instantaneous distance, and radial  and tangential velocity 

relative to the attracting center ,  A nonlinear feedback control law for the 

instantaneous thrust-direction is derived which is based on the approximation 

that the gravity vector and the vehicle thrust  acceleration magnitude during the 

maneuver a r e  to be constant at values intermediate between their present  and 

expected terminal values. 

dimensionless functions of the three relevant state variables,  so  that the 

The control law is shown to depend only on two 

solution is, in effect, expressed in a reduced state space of two dimensions. 

The optimal thrust-direction is defined analytically and graphically as a 

function on the reduced state space. 

The open-loop solution to the minimum-time t ransfer  problem is the 

well-known linear tangent law. The new contributions he re  a r e  (1)  showing 
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that the solution depends on only two dimensionless functions of state and ( 2 )  

putting the solution in the f o r m  of a feedback law which depends on these two 

functions. 

For  a maneuver spanning a considerable a r c  around the attracting 

center (up to about 40' ), the solution may be used directly as a suboptimal 

control or  to give starting values fo r  an  iterative solution of the t rue inverse- 

square gravity problem. 

terminal  thrusts to circularize a near -circular orbit near the desired altitude 

or for  intermittent thrusts to maintain a satellite in a desired circular orbit. 

More appropriately, it may be used to determine 

INTRODUCTION 

The injection of a rocket vehicle into a c i rcular  orbit of radius r in 

a gravity field $2 involves simultaneously nulling the radial  velocity and 

achieving tangential velocity U = a t  radius r . A feedback control to r 

achieve these conditions may be derived by assuming that at each instant (1)  

the gravity vector is to be constant in the region of the remaining maneuver 

at some value intermediate between its value at  the present  position and its 

value at the expected point of injection, and ( 2 )  the magnitude of thrust  

acceleration is to be constant at a value intermediate between its present 

value and its value at the expected t ime of injection. The assumption of 

constant gravity is reasonably good for nearly circular orbits,  i f  the maneuver 

t ime is short  enough that the angular distance traveled around the attracting 

center is  l e s s  than 30° to 40° [Ref. 11. With the added assumption that the 

vehicle position and velocity l ie in the plane of the desired orbit, the terminal 

phase of the injection maneuver may be approximated by the planar problem 
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of choosing thrust  direction for minimum-time t ransfer  to specified altitude 

and horizontal velocity, using a constant magnitude thrust  acceleration, in a 

gravity field constant in direction and magnitude. 

Let yo , uo , vo , to , Po and h U , 0 , tf , p f  be initial and final 

values of altitude, horizontal and vertical velocity, time, and thrust  direction 

angle above the horizontal. Let a and g be the magnitudes of vehicle thrust  

acceleration and gravity. The present optimal thrust  direction Po will be 

related to present state yo , uo , vo through the equations: 

V 
0 tanY = - U’U0 

The feedback law will involve computing 17 and tan y f rom current  state and 

desired h and and f 2  to obtain go , P f ,  and 

using p 

quantities 

Similarly, P and the normalized time-to-injection 

U, inverting the functions f l  

for control. Now Po wi l l  depend only on the two dimensionless 
0 

q , y , instead of on the three physical quantities yo , uo , vo . 

will depend only on q and y . Thus, in the y o ,  u 0 ’  v 0 state space, a 

parabola specified by the two parameters  q , y will be a locus of constant 

Po , constant P f  , and constant T . 
three-space y o ,  u o ,  v 

The solution to a problem stated in the 

will be expressed in the two-space q , y . 



MINIMUM-TIME TRANSFER 

I N  THE REDUCED STATE SPACE q ,  y 

Take an earth-centered inertial f rame with vertical  along the present  
A 

value of the intermediate gravity vector g . Let x , y , u , v denote horizontal 

and vertical  components of position and velocity a t  time t ; l e t  p denote thrust  

elevation above the horizontal; and le t  subscripts o and f denote initial and 

final values of these quantities, a s  shown in Fig. 1 . The motion satisfies 

; r = u  (1) 

q = v  (2) 

fi = a c o s p  ( 3 )  

+ = a s i n p - g  (4) 

where a and g a r e  magnitudes of the intermediate thrust  acceleration and 

gravity defined in Appendix A. 

The optimal thrust  direction p is chosen to minimize the Hamiltonian 

X = 1 t Xxu t X v t XUacosp t Xv(asin(3 - g )  (5)  Y 

for  values of the costate vector satisfying the Euler -Lagrange equations 

i U = -Ax ( 6 )  

i = -1 (7 )  

x X = o  (8)  

V Y 

i = o  ( 9 )  Y 

and values of state satisfying ( 1 )  - (4) .  Integrating (6 )  - (9) ,  

Ax = constant 

X = constant 
Y 

-4-  
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V = A v  - A y ( t - t o )  
0 

For injection into a horizontal trajectory at altitude h with velocity U , we 

prescr ibe terminal  conditione 

Yf = h (14) 

Uf = u (1 5) 

Vf = 0 (16) 

Since the downrange distance xf at injection is f ree ,  A = 0 ,  so A = constant. 
x U 

The thrust  direction which minimizes X is given by 

or 

t a n p f  = tan @ . o  - c ( t f - t o )  

where 

-0 t anPo  - - - x u  
I .  

U 

The state history for minimum-time injection into a horizontal 

t ra jectory starting f rom r e s t  and in the absence of gravity is given in Chapter 

2 of Reference 2 . The solution is there obtained by integrating ( 1 )  - (4) with 

p a s  independent variable, using the relation 
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2 a =  - c c o s  p d t  

f rom (17) and (20) to change 

t e rms  due to initial velocity 

(21 1 

f r o m  t to p a e  independent variable. Adding 

and gravity yields 

tanp t sec Po a 
c t a n p f  t sec p, uo uf = - I n  

a 
Vf = ;(seep 0 - s e c p f )  - g ( t f  - t o )  t vo 

5 [( tan Po - tan p,) sec p, - (sec p, - sec p f )  tan pf - 
yf 2c 

Imposing terminal  conditions (14 )  - (16)  on ( 2 2 )  - (24 )  yields three equations 

which, together with (18), constitute a set  of four equations in unknowns 

Po P f  , tf - to and c . 
Following a procedure suggested in Reference 2 ,  we obtain a pair of 

equations defining P 

variables 

and p f  implicitly a s  €unctions of the dimensionless 
0 

V 
0 tany = - u -uo 

The functions rl = f l  ( Po , P f  ; g ,  a and tany = f 2 (  P o ,  p f ;  !) a r e  stated 

below and a r e  derived in Appendix B. 
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where 

c 

2 (  tanPo - t an  p f )  ( sec po - sec  p f  1) 

and 

g ( t a n p o - t a n p f )  a - ( s e c p  0 - s e c p f )  

Pn 

tany = t anp  + sec p 
tan p t sec p 

0 0 

The symbol [A] represents  the t e r m  in square brackets in (24). 

ized time-to-injection is 

The normal-  

Note that q and y determine Po and p through (27) and (30), and f 

Po and p f  determine T through (31).  Thus, the optimum thrust  direction 

angle above the horizontal, Po , is given a s  a function of q and y . This 
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is the feedback law for minimum-time injection into a horizontal trajectory for 

a vehicle with constant thrust  acceleration magnitude in a gravity field constant 

in direction and magnitude. 

a 
g 

For the case - = 3 ,  F i g .  2 shows minimum-time paths and contours 

of constant thrust-direction angle on an T versus y plot. Figure 3 shows 

the same minimum-time paths as Fig .  2, with the paths intersecting contours 

(isochrones) of constant dimensionless time-to-injection, again f o r  - = 3 . a 
g 

To i l lustrate the use of these charts,  suppose that at the radius of the 

desired orbit the initial altitude-to-be-gained, h - yo , horizontal velocity-to- 

be-gained, U - uo , and vertical velocity-to-be-lost, v map to point l l t l l  
0 '  

- . 3 5 )  on Fig. 2 ,  The optimal thrust  direction at I l t "  is 1 
T 

( y  = 3 7 O ,  - - 

(3, = 80° ,  and the extremal path is that labeled P 

Paths 

Po = P f  = -80° 

time-to-injection along this path may be read f rom F i g .  3. 

= -80° . Following this 

Po is reduced to 40' at flyof , to 0" at ffxlf , and finally to 

at the injection point f1htg . The values of dimensionless 

The heavy line labeled "locus of fixed-point extremals" on F i g .  2 and 

" terminal  manifold" on F i g .  3 is the locus on which all extremals terminate.  

It is the locus for which extremal t ra jector ies  a r e  fixed points in ( T , y ) space, 

and the thrust  direction is constant at a value such that the vector sum of thrust  

and gravity is along the velocity-to-be-gained vector.  

f r o m  ( Po , p f )  to ( q , y ) a r e  discussed in Appendix C.  

Details of the mapping 



CONCLUSION 

A nonlinear feedback law has been obtained for controlling thrust  

direction to produce minimum-time injection of a spacecraft  into circular 

orbit ,  

determined f rom three physical quantities: 

center, (2 )  radial  velocity, and ( 3 )  tangential velocity. 

This law depends only on two dimensionless quantities which can be 

( 1 )  distance f rom the attracting 
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APPENDIX A 

Intermediate Value of Gravity Vector and Thrust Acceleration Magnitude 

We choose the magnitude of the intermediate gravity vector g so that 

the increment in  potential energy corresponding to ascent f rom initial radial  

distance r to final radial distance r in the t rue  5 gravity field will be the 
r 0 f 

same a s  is obtained by ascent through height rf - ro 

field g . 

L 
o f  g = r r  

This is an a rb i t ra ry  but reasonable choice of g . 
W e  choose the direction of the intermediate 

magnitude of the intermediate thrust  acceleration by 

in a constant gravity 

gravity vector and the 

the following iteration: 
a 

1. Let the first estimate of intermediate g have magnitude (A-2)  

and direction downward along the present vertical. With the xy coordinate 

f r a m e  so defined, evaluate q , y and solve for Po , p f  by a Newton-Raphson 

iteration starting f rom (3, , pf values stored in an q 

Compute tf - t o  from ( 3 1 )  and c f rom (1 8).  

a 
g 

y grid for  nominal - .  
Compute intermediate a , 

assuming constant thrust  T , and mass flow ra te  m . 

1 1 
(A-3)  

2. Compute 

-t U o ( t f - t o )  

(A-4)  

tan (3, t sec  Po a - 
an p f + sec  p xf - xo - 7 ( sec  po - sec pf - tan pf en 

C 

and estimate the angle to injection 

-10 - 



Xf - xo e =  

-11- 

(A-5)  

- r0 r f )  

The formula for xf - x is derived in Reference 2, Chapter 2. 
0 

3 .  Let the next estimate of the direction of be halfway between the 

present  vertical  and the vertical at the estimated point of injection, i. e . ,  bi-  

secting the angle 8 . 
4. In the new xy frame so defined, evaluate q , y , and repeat steps 

one through four. 

The need for ca re  in selecting intermediate g and a can be shown by 

a simplified problem. 

magnitude at value g , and thrust acceleration were constant at a , and that 

control were based on the correct  direction of g , but incorrect magnitudes 

g and â . 

Suppose that gravity were truly constant in direction and 
2 

A 

A Further  suppose that the initial horizontal velocity were the desired 

value, so  that the problem is the purely vertical  one of nulling vertical velocity 

at the desired altitude. 

The control consists of switching curves.  With perfect knowledge of 

a and g , only one switch is  required. But with imperfect knowledge, the 

vehicle under t rue  net upward acceleration a - g o r  downward acceleration 

a t g cannot follow the switching curves (based on nominal â - or ^a t $ )  to 

the desired state.  

deviation of (2 , 2 ) f rom ( a , g ) ,  and decreasing with the width of a tolerance 

Many switches a r e  required, the number increasing with the 

zone along the switching curve. 
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If the vehicle must reorient to thrust ,  this i s  expensive in attitude 

control, and interposes periods during which no thrust  can be applied while the 

vehicle i s  rotated through 180' . Even if no reorientation i s  required, time i s  

wasted while state, following parabolas based on actual a - g and a t g , 

departs and returns  in short  a r c s  f rom the switching curves based on a - g 

and a t g . 

A A  

A A  



A-PPENDIX B 

Initial and Final Thrust Direction 

Expressed Implicitly As Functions of and y 

The equations 

a U - u o  = - l n  C 
0 

tan Po t sec p 
t a n p f  t s e c p  f 

-V = - ( s e c p o  a - s e c p f )  
0 C 

r 
- tan pf ) sec  Po - ( sec Po - sec Pf ) tan pf - - h - Y o  - 2 

2c 

tanp  - tanpf 
0 c =  
tf - to 

a r e  to be solved for  p, , pf , tf - to , and c .  

F r o m  (B-2)  and (B-4),  the normalized time-to-injection T is  

tan Po - tan pf 

g (  tan po - tan p,) - ( sec  p - sec  pf)  
- a( t f  - to) - 1 

- s e c p o - s e c p f )  - a 
V 

0 
0 I - ( tan Po - tan pf 

(B-5)  

F r o m  (B-1) and (B-4) 

a( tf - to) tanPo t sec  Po 
In t a n p f  t s e c p f  U - uo - tanp, - tan pf 

- 

Dividing by vo and using (B- 5) and definition (26) ,  

V 1 
n 

-13 - 

(B-7) 



-14 - 
Substituting ( B - 4 )  in ( B - 3 )  and multiplying the resulting equation by 7 2a , 

V O  

where [ A ]  i s  the t e r m  in brackets in (24). Substituting (B-5 )  in ( B - 8 ) ,  

Multiplying ( B - 9 )  by the square of ( B - 7 ) ,  

2 
2 a (  h - Yo 1 - 

( U - U , )  

1 

tan p o t  sec  (3, 

tan p t sec p 

2 {[A] +:(tanPo - t a n p f )  - 

(B-10)  
1 2 -  

,' 
2 (  tanPo - t a n p f )  ( sec Po - sec p f )  

Then 

2 
V 

t 0 (B-11)  

is evaluated from ( B - 9 )  and (B-10) .  

the Introduction a r e  given by (B-11) ,  (B-7 ) ,  and (B-5 ) ,  respectively. 

The functions f l  , f 2  , f mentioned in 3 



APPENDIX C 

Extremals,  Loci of Constant Control, Isochrones, 

and the Terminal Manifold in the Reduced State Space 

As present t ime approaches final t ime tf , the present thrust  

direction p approaches the final thrust  direction pf , following the l inear 

tangent law 

0 

tanPf = tanPo - c (  t, - t o )  (C-1)  

Thus, in Po , (3, space ( see  Fig.4)  the extrema1 (minimum-time) t ra jector ies  

a r e  paths p - cons tan t ,  terminating on the line p = pf , and the loci of 

constant control a r e  lines p = constant. This grid of extremals and constant 

control loci is  mapped from (3, , Df (Fig.  4) to  

T 

and 4 shows that the mapping i s  topographic, but not conformal. Corresponding 

points on the two figures have been labeled with corresponding le t te rs .  In cases  

where the relation of (3, = constant and p 

obscured by crowding, it i s  convenient to refer  t o  Fig .  4 to see what portions of 

(3, , Pf space a r e  mapped into small  regions of q , y 

f -  0 

0 

q , y ( F i g .  2)  by the relations 

= f l ( P o  9 P f ,  g ,  a and tany = f 2 (  P o ,  (3,; :) , A comparison of F i g s .  2 

- constant curves in F i g .  2 a r e  f -  

space. 

The case c = 0 corresponds to X = 0 ( see  ( 2 0 )  ), i .  e . ,  to f ree  
Y 

terminal  altitude. 

line p = Pf . Since al l  extremals terminate on the line (3 = pf , we refer  

to it, and i ts  image in q , y space, a s  the " terminal  manifold. 

The extremals for  this case a r e  simply fixed points on the 

0 0 

With terminal  altitude free,  the constant thrust-direction angle (3 and 

time-to-injection tf - to satisfy 

velocity-to-be-gained = (net acceleration) (tf-to) : 

4 Ir (U - u o ) l  - v o j  A -  - [ a c o s p  1 t ( a s i n p  - g)?] ( t f  - t o )  

-15- 
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so that 

a 

a - cos  p 
g 

V 1 - - s inp  
- - 0 tany = u -  uo 

v 2 t ( u - u o )  2 = ( t f  - t  )2  ( g 2  t a' - 2 a g s i n ~ )  
0 

To reach the desired altitude under constant thrust, 

1 2 h = ~ o t v o ( t f - t o ) t ~ ( t f - t o )  ( a s i n p - g )  

Substituting vo from (C -2) ,  

1 2 h - yo = 7(tf - t o )  ( g  - a s i n p )  

F r o m  (C-4 )  and (C-6) ,  

a a 
- (  1 - - s inp  ) 

- 
2 a ( h  - Y o )  

v 0 t ( U - u o )  a 
r l =  2 2 -  

1 t (i)2 - 2 g s i n p  0 

F r o m  ( C - 2 )  

(C - 5) 

The terminal  manifold represents  those t ra jector ies  in which only terminal 

velocity was constrained, and the de s i red altitude was reached, by coincidence, 

simultaneously with the desired velocity. Equations (C-3) ,  (C-7) ,  and (C-8) 

ra ther  than (B-7 ) ,  (B-11), and ( B - 5 )  must be used on the terminal  manifold, 

since the latter expressions a r e  indeterminate for p = Qf . 
0 

To compute contours of constant T it is  convenient to introduce 

new variable s 

0 Pf fT.= p ( C  - 9 )  
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t .  

. .  

. .  

. .  

r .  

6 = Po - Pf 

in t e rms  of which (B-5) becomes 

1 
U T =  

sin 2 
6 
2 

g _ -  
a 

cos - 
We define 

U 

6 u A  s i n 2  1 k(=., z) = - = g - - 
6 a - r  
2 cos- 

(C-10) 

(C-11) 

(C-12) 

so that, for given g , contours of constant T a r e  contours of constant k in a 

Pf space, which can then be mapped to ‘1 , y space by 
Po ’ 

and 

. .  

. .  
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